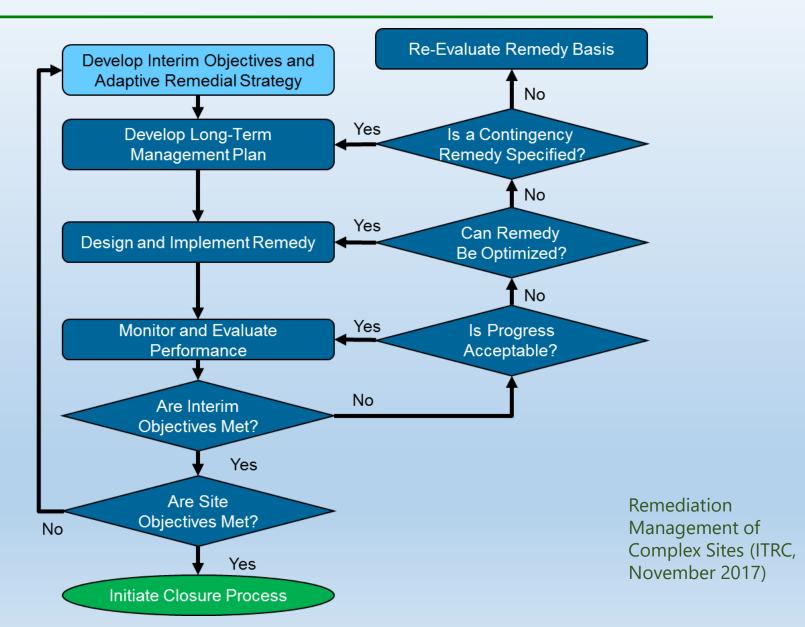
Planning Treatment Trains and Concurrent Remedies


Failing to plan is...

planning to waste a lot of _____ (fill in the blank).

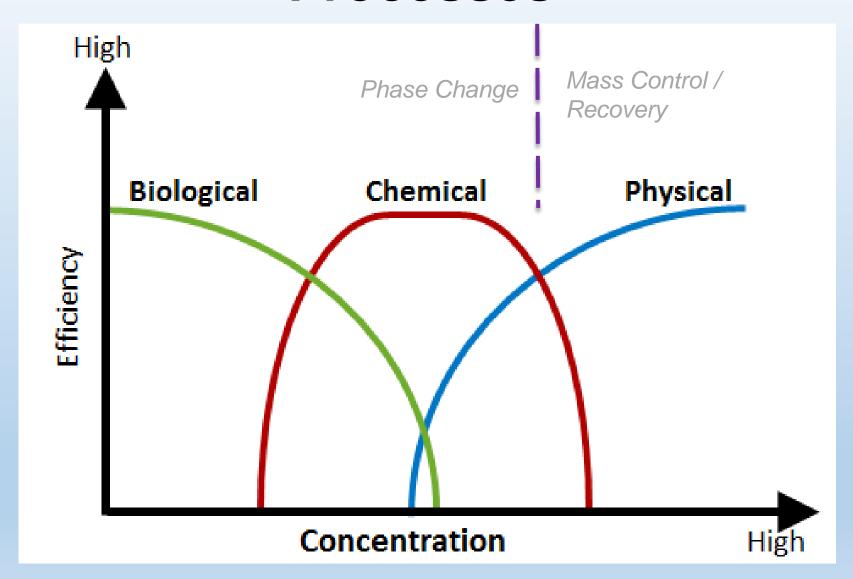
"CAP to Closure"

- What does this mean?
- How many states require one?
- Do you usually reach NFA in one try?
- Is the CAP ever updated?
 - How are modifications made?
 - How are costs reconciled?
- How do you judge remedial progress?

Adaptive Site Management

21 Technology "Tools"

- 1. Excavation
- 2. Skimming
- 3. Vacuum enhanced skimming (LNAPL & vapor)
- Total liquid extraction (LNAPL & water)
- Multi-phase extraction (LNAPL, water, & vapor)
- 6. Water/hot water flooding
- 7. Surfactant-enhanced subsurface remediation
- 8. Cosolvent flushing
- 9. Steam injection
- 10. Electrical resistance heating


- 11. Air sparging/soil vapor extraction (AS/SVE)
- 12. In-situ chemical oxidation
- Natural source zone depletion (NSZD)
- 14. Physical or hydraulic containment
- 15. In-situ soil mixing (stabilization)
- 16. Thermal conduction heating
- 17. In-situ smoldering
- 18. Biosparging/bioventing
- 19. Enhanced anaerobic biodegradation
- 20. Activated carbon
- 21. Phytotechnology

LNAPL Remedial Technology Groups

- Mass Control Contain LNAPL at a defined boundary
- Mass Recovery Remove LNAPL mass to limit migration
- Phase Change Abate unacceptable COCs

Technologies (i.e. processes) sometimes overlap groups.

Processes

Remedial Process Overlap

PHYSICAL

Excavation
Skimming
Total Liquid Extraction

Physical or Hydraulic Containment

In Situ Soil Mixing

Water flood

MPE

AS / SVE Vacuum-Enhanced

Skimming

Biosparge/Biovent Activated Carbon SESR

Cosolvent Flushing

Electric Heat

Thermal Heat

Steam Injection

BIOLOGICAL

Phytotechnology NSZD / MNA

Enhanced

Anaerobic

Degradation

CHEMICAL

ISCO molderir

Smoldering

Technically Achievable

Examples Include:

Remedial Mechanism

Technically Achievable Limit

1. LNAPL Recoverability

LNAPL Transmissivity (0.1 to 0.8 ft²/day)

2. Volatilization

- AS
- SVE

Vapor Pressure (~1 kPa at 15° C) PID emissions stable, <xxx ppm

3. Injection

- ISCO
 - Carbon

Soil texture limits delivery of oxidant/other media

4. Biodegradation

- Biovent / Biosparge
- NSZD/MNA

Rate of degradation won't achieve goal in timeframe

"Treatment Train"

(Consecutive Remedies)

- PLANNING to use multiple remedial technologies in sequence to achieve closure
- Sequence remedial technologies based on contaminant concerns and remedial objectives
 - Consider starting with a primary technology (excavation?) tailored for higher contaminant mass
 - Continue with a 2nd treatment technology (ISCO?) and possibly a tertiary polishing step (CBI?) to address remaining contaminant mass and to eliminate contaminant concerns

Treatment Trains

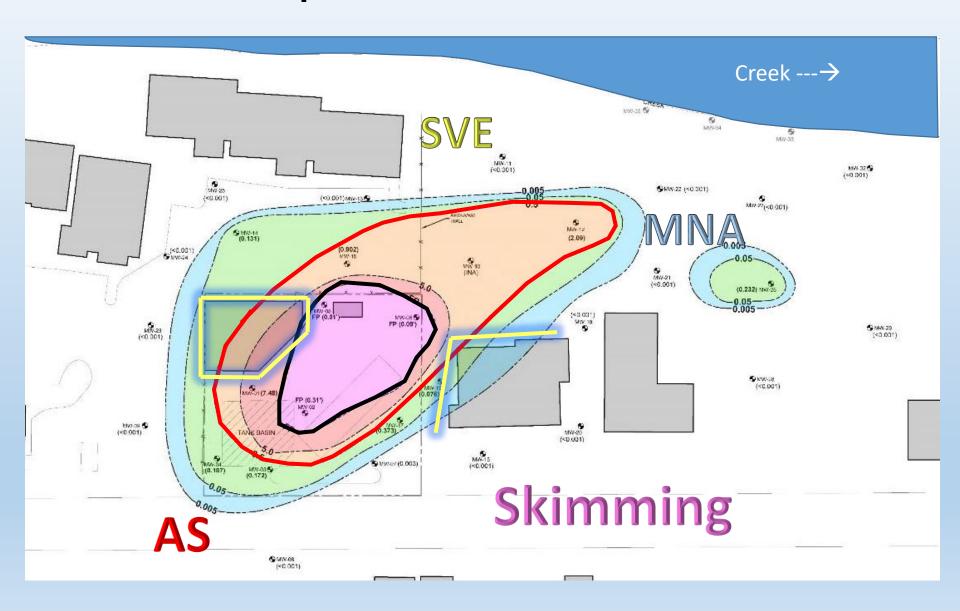
Bad

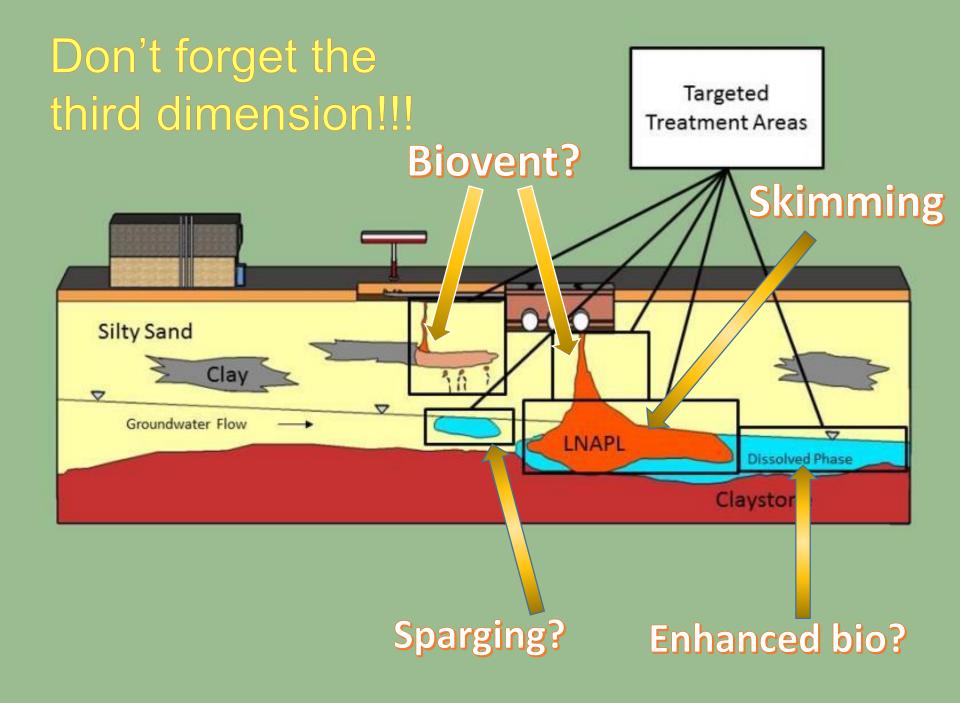
- ▶ Unplanned, lack SMART objectives, metrics for transition, milestones and endpoints uncertain
- ▶ "Throwing" more technologies at the problem

Good

- ▶ When planned with SMART objectives, metrics for transition, milestones and endpoints defined
- Orderly implementation

SMART?

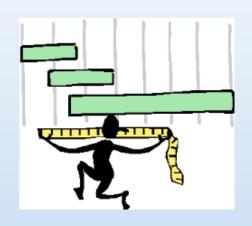

- Specific Targeted treatment area and technology-specific endpoints are clearly stated
- Measurable Performance metrics that demonstrate progress towards the endpoint
- Agreed Upon Concerns, goals, objectives, treatment areas, metrics, endpoints
- Realistic Demonstrated ability to achieve objective
- Time-Based Target date of remedial endpoint being achieved


Achieving a remedial endpoint does not necessarily mean that all contaminant concerns have been eliminated

Concurrent Remedies

- Using multiple technologies on a site at the same time, in different target zones due to differing contaminant concentrations
 - Use primary technologies in the source area (e.g. excavation).
 - Use secondary or tertiary technologies on periphery of contaminated area, and in deeper zones.
- Still rely on SMART performance metrics to measure remedial progress

Example: Treatment Areas

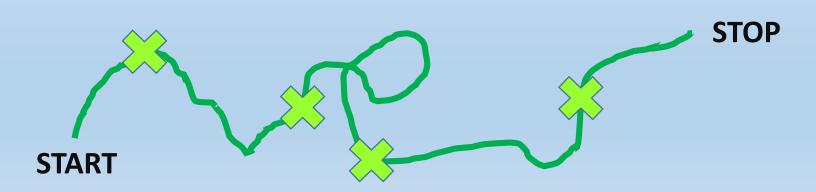

Performance Metrics

Measurable characteristics that track the progress of a selected technology to achieve a remedial objective and abate a contaminant concern

ASK: What conditions do you expect to change as you remediate the site? And how quickly?

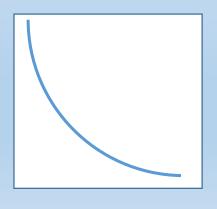
Performance Metrics

- Technology-specific!
- Track progress toward endpoint
- Verify that remedy is being implemented effectively
- Allow for mid-course corrections
- Allow for CSM updates


Performance Metrics Examples (What you measure)

- AS/SVE Concentrations in emission samples (e.g. PID, benzene, CO₂, CH₄)
- ISCO Data to evaluate distribution of an in-situ application (e.g. pH, ORP, DO, SO₄-2)
- SVE Interim or final soil confirmation samples
- MNA Organic/ inorganic/ biological samples

Remedial Milestones (Interim Objectives)


Anticipated points to evaluate progress towards a remediation technology endpoint.

(a schedule)

Remedial Milestone Examples

- LNAPL reduction = 10% of volume estimate per quarter or /month
- Emissions decrease 25% per quarter or /month
- Dissolved phase concentrations remediated to 25%, 50%, 75% of endpoint (with timeframe)

Remember!

Declines are exponential, not linear (90% of the result takes 10% of the time?)

Endpoints

- Also technology-specific!
- Defined as:
 - LNAPL concern has been addressed, or
 - 2. Practicable limit of the technology reached
- If technology reaches its practicable limit before LNAPL concern is abated, then the endpoint marks the <u>transition</u> to the next technology in the treatment train

Endpoint Identification

- Predetermined value that describes when a technology has achieved the limits of beneficial application
- Should account for expectations of the selected remedial technology
- Does not necessarily eliminate all contaminant concerns described in the CSM

The endpoint may not be your site goal!